
 Skip to content

SpringHow

	Spring Framework

	Session
	Caching

	Spring Security
	Thymeleaf
	Banner.txt Generator

SpringHow

🏠 ❯ Spring Framework ❯ Generate PDF files with Spring Boot using ITextPDF
Generate PDF files with Spring Boot using ITextPDF

Raja Anbazhagan September 27, 2020August 31, 2021
 Spring Framework
In this post, we will discuss how to generate PDF files using Spring Boot, thymeleaf, and Itext library.
Understanding Itext PDF
The library helps generate PDF files by either creating each element manually or by converting HTML+CSS into PDF. The methods provided by this library are straightforward. Let’s see both of these methods in action.
Generating PDF from HTML
To start with, We need the following maven dependency.
 <dependency>
 <groupId>com.itextpdf</groupId>
 <artifactId>kernel</artifactId>
 <version>7.1.12</version>
 </dependency>Code language: HTML, XML (xml)
The Itext library comes with a supporting library called html2pdf that can convert Html and CSS to visually pleasing PDF documents. Unlike using Java code, this method is clean to implement. So let us add that dependency as well to our java project.
 <dependency>
 <groupId>com.itextpdf</groupId>
 <artifactId>html2pdf</artifactId>
 <version>3.0.1</version>
 </dependency>Code language: HTML, XML (xml)
<!doctype html>
<html lang="en">
<head>
 <title>SpringHow html to pdf</title>
 <link rel="stylesheet" href="style.css">
</head>
<body>
 <div>
 <p >Lorum ipsum some text before image. Lorum ipsum some text before image. Lorum ipsum some text before image. Lorum ipsum some text before image. Lorum ipsum some text before image. Lorum ipsum some text before image. Lorum ipsum some text before image. Lorum ipsum some text before image. </p>

 <p >Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image. Lorum ipsum some text after image.</p>
 <table>
 <tr><th>Product</th><th>Quantity</th><th>Price</th><th>Total</th></tr>
 <tr><td>Jeans</td><td>2</td><td>10.99</td><td>20.98</td></tr>
 <tr><td>Shirt</td><td>2</td><td>7.99</td><td>14.98</td></tr>
 </table>
 </div>
</body>
</html>Code language: HTML, XML (xml)
Call the above HTML as pdf-input.html.I placed appropriate styles in the styles.css file. You can use your own. With these in place, let’s call the HtmlConverter.convertToPdf method in our Java code.
import java.io.*;
import com.itextpdf.html2pdf.HtmlConverter;

public class GeneratePDFUsingHTML {

 public static void main(String[] args) throws IOException {

 HtmlConverter.convertToPdf(new File("./pdf-input.html"),new File("demo-html.pdf"));
 }
}Code language: JavaScript (javascript)
This helper method takes an input HTML file parses it applies CSS and converts it to a pdf output. This approach is simple, isn’t it? It is far better to update the HTML file rather than digging into a thousand lines of code. And here is the result.

HTML to PDF using Java and ITEXT PDF
We can use the above approach anywhere in java applications to generate rich and visually pleasing PDF files. Even though this seems like a great way to create PDF files, We are still lacking the ability to create dynamic PDF files.
Generating PDF from MVC views
Spring MVC with a template engine can provide dynamic HTML content. We can easily convert these into PDF responses with the following approach. For this example, I imported spring-boot-starter-web and spring-boot-starter-thymeleaf for MVC and thymeleaf support to my spring boot project. You may use your own choice of template engine. Take a look at this thymeleaf template below. This will generate us the order Details. Also, I have a helper method from OrderHelper to generate some dummy order content.
<!doctype html>
<html lang="en" xmlns:th="http://www.thymeleaf.org">
<head>
 <meta charset="UTF-8">
 <meta content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0"
 name="viewport">
 <meta content="ie=edge" http-equiv="X-UA-Compatible">
 <title>Spring Boot - Thymeleaf</title>
 <link th:href="@{/main.css}" rel="stylesheet"/>
</head>
<body class="flex items-center justify-center h-screen">
<div class="rounded-lg border shadow-lg p-10 w-3/5">
 <div class="flex flex-row justify-between pb-4">
 <div>
 <h2 class="text-xl font-bold">Order #
 </h2>
 </div>
 <div>
 <div class="text-xl font-bold" th:text="${orderEntry.date}"></div>
 </div>
 </div>
 <div class="flex flex-col pb-8">
 <div class="pb-2">
 <h2 class="text-xl font-bold">Delivery Address</h2>
 </div>
 <div th:text="${orderEntry.account.address.street}"></div>
 <div th:text="${orderEntry.account.address.city}"></div>
 <div th:text="${orderEntry.account.address.state}"></div>
 <div th:text="${orderEntry.account.address.zipCode}"></div>

 </div>
 <table class="table-fixed w-full text-right border rounded">
 <thead class="bg-gray-100">
 <tr>
 <th class="text-left pl-4">Product</th>
 <th>Qty</th>
 <th>Price</th>
 <th class="pr-4">Total</th>
 </tr>
 </thead>
 <tbody>
 <tr th:each="item : ${orderEntry.items}">
 <td class="pl-4 text-left" th:text="${item.name}"></td>
 <td th:text="${item.quantity}"></td>
 <td th:text="${item.price}"></td>
 <td class="pr-4" th:text="${item.price * item.quantity}"></td>
 </tr>
 </tbody>
 </table>
 <div class="flex flex-row-reverse p-5">
 <h2 class="font-medium bg-gray-200 p-2 rounded">
 Grand Total:
 </h2>
 </div>
 <h2 class="text-xl font-bold">Payment Details</h2>
 <table class="table-fixed text-left w-2/6 border">
 <tr>
 <th class="text-green-600">Card Number</th>
 <td th:text="${orderEntry.payment.cardNumber}"></td>
 </tr>
 <tr>
 <th class="text-green-600">CVV</th>
 <td th:text="${orderEntry.payment.cvv}"></td>
 </tr>
 <tr>
 <th class="text-green-600">Expires (MM/YYYY)</th>
 <td th:text="${orderEntry.payment.month +'/'+ orderEntry.payment.year}"></td>
 </tr>
 </table>
</div>
</body>
</html>Code language: HTML, XML (xml)
 @RequestMapping(path = "/")
 public String getOrderPage(Model model) throws IOException {
 Order order = OrderHelper.getOrder()
 model.addAttribute("orderEntry", order);
 return "order";
 }Code language: JavaScript (javascript)
With the above setup, Your response when hitting the controller API looks like below.
Sample HTML view to be converted to PDF
To convert this MVC response into PDF, you can simply take over the thymeleaf generated HTML content and convert it into PDF using HtmlConverter.
@RequestMapping(path = "/pdf")
public ResponseEntity<?> getPDF(HttpServletRequest request, HttpServletResponse response) throws IOException {

 /* Do Business Logic*/

 Order order = OrderHelper.getOrder();

 /* Create HTML using Thymeleaf template Engine */

 WebContext context = new WebContext(request, response, servletContext);
 context.setVariable("orderEntry", order);
 String orderHtml = templateEngine.process("order", context);

 /* Setup Source and target I/O streams */

 ByteArrayOutputStream target = new ByteArrayOutputStream();

 /*Setup converter properties. */
 ConverterProperties converterProperties = new ConverterProperties();
 converterProperties.setBaseUri("http://localhost:8080");

 /* Call convert method */
 HtmlConverter.convertToPdf(orderHtml, target, converterProperties);

 /* extract output as bytes */
 byte[] bytes = target.toByteArray();

 /* Send the response as downloadable PDF */

 return ResponseEntity.ok()
 .contentType(MediaType.APPLICATION_PDF)
 .body(bytes);

}Code language: PHP (php)
Testing Spring Boot PDF Generation
I have written my controller method on /orders/pdf/ and here are the results when I hit the URL from the browser.

Spring Boot PDF generation using ITEXT PDF and Thymeleaf
Here you can see that the response is a PDF document. You can confirm the same by the look of Chrome’s PDF viewer.
Points to Note When using HTML to PDF in Spring Boot
	The converterProperties.setBaseUri important. Otherwise, static assets like /main.css will be resolved from the local path.
	You can note that some elements moved a bit or misaligned compared to it’s HTML counterpart. This behaviour is due to the library not supporting some CSS properties. But you can always tweak the CSS for best results.
	Keep an eye on the logs for unsupported CSS properties. For Example, Unsupported pseudo CSS selector: :-moz-focusring. you can safely ignore the error as long as the PDF generation will continue.
	If you need the file to download on request, then you could add a disposition as shown below.

 return ResponseEntity.ok()
 .header(HttpHeaders.CONTENT_DISPOSITION, "attachment; filename=order.pdf")
 .contentType(MediaType.APPLICATION_PDF)
 .body(bytes); Code language: JavaScript (javascript)
That’s all I have on this topic for now. The sample is available in the Github repository.
Related
	iText HTML to PDF in Java with Examples
	Spring Boot Hello World Tutorial
	Spring Boot Email using Thymeleaf with Example
	Thymeleaf views from database in Spring Boot
	Send HTML emails with FreeMarker Templates – Spring Boot

Post navigation
Next

Spring Boot and Zipkin for Distributed TracingSimilar Posts
Drools Rule Engine for Spring Boot – Tutorial
 February 14, 2021May 13, 2021 Spring Framework
Lets learn how to integrate Drools Rule Engine with Spring Boot application for business rules management with an Example. Drools is a Business Rule Engine that is based on Java Rules API. It lets you create complex applications where the business logic changes a lot post development. Introduction To Drools For example, you may run…

Spring Boot H2 Database
 February 16, 2021April 28, 2021 Spring Framework
Introduction Let’s learn how to use the h2 database with the spring boot application and its configuration via application properties. H2 is an in-memory database that we can embed within the application. For this reason, H2 is the right candidate for loading test data or to prototype an application. Spring Boot Dependencies Spring Boot doesn’t…

Derby Embedded Database for Spring Boot
 February 16, 2021September 22, 2021 Spring Boot, Spring Framework
In this post, We will see how we can use Apache Derby embedded database with Spring Boot applications with an example. Introduction Apache Derby is a pure java implementation of a relational database. Also, it complies with JDBC and RDBMS standards. For this reason, we can easily embed Derby into applications. Derby Dependencies for Spring…

Customizing Spring Session Cookies
 December 30, 2020April 16, 2021 Spring Framework
In this post, We will take a look at Customizing Spring Session Cookies with an example. Typical behaviour In session-based authentications like Form-Login and CAS(Central Authentication System), the session is established via cookies. This is done by sending a Set-Cookie header after a successful login similar to the one shown below. Once the browser reads this response…

Password Encoder in Spring Security
 December 25, 2020May 25, 2021 Spring Framework
In this post, We will take a look at password encoders in detail with an example. Traditionally, storing passwords were hard. The application will have to encode user passwords and store them in a database. But with password encoders provided by spring security, all of these can be done automatically. Password Encoders are beans that…

Using JdbcTemplate with Spring Boot
 February 17, 2021April 20, 2022 Spring Framework
Introduction Spring Boot provides support to typical JDBC operations via jdbcTemplate. With JDBC templates, you can perform complex database operations which are not possible through JPA. Starter Dependencies JDBC templates feature is part of the Spring JDBC module. This means that either the JPA starter or the JDBC starter will bring this support. As we…

Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *
Email *

 Save my name, email, and website in this browser for the next time I comment.
Notify me via e-mail if anyone answers my comment.

17 Comments
	

 Marie Moore says:
 July 31, 2023 at 03:59 pm
I was able to add html footer and header to each page by handling the css @page media this way:
 /***********************
 PAGE
 *********************************/
 @page{
 size: A4;
 margin-right: 30px;
 margin-left: 30px;
 @top-left {
 content: element(no-logo-header);
 }
 @top-right {
 content: element(header_title);
 }
 }
@page :right{
 @top-left {
 content: element(header);
 }
 @bottom-center {
 content: element(footer);
 }
 }
@page :before{
 margin-top: 4.8cm;
 margin-bottom: 2.8cm;
 }
/***********************
 HEADER
 *********************************/
 header {
 position: running(header);
 display: block;
 width: 100%;
 }
.no-logo-header{
 position: running(no-logo-header);
 width: 100%;
 }
.header_title {
 position: running(header_title);
 }
 /***********************
 FOOTER
 *********************************/
 .footer{
 position: running(footer);
 height: 200px;
 width: 100%;
 }
 and in my html file:

some content
a different content

as you can see, in the html file, you need the header and footer as the first elements and only then the content of the pages. In the css file, you can have specific css rules for odd, even, first pages. I was able to increase the page margins by using the pseudo element :before on @page.
 I hope this can help someone!

Reply

	

 Marie Moore says:
 April 25, 2023 at 03:23 pm
Thank you for this great tutorial! FYI, flexbox is not supported in the generation of the pdf …
 using float:right/left, text-align: left/right and other little tricks make it possible to make the style work like I needed to

Reply

	

 Isaac Guedes says:
 January 28, 2023 at 03:03 am
I’m really happy guy. You’ve really helped me! Thanks a lot!!

Reply

	

 Abdorime says:
 June 6, 2022 at 02:07 am
Thank you for this tutorial, can you give some insights on how to add html footer and header to each page

Reply
	

 Raja Anbazhagan says:
 June 6, 2022 at 04:01 am
In Itext, there is no specific thing as a header/footer. But if you are using templates like in this tutorial, you can add the HTML for the header and footer and that content will come to your PDF.

Reply

	

 Jens Panis says:
 December 1, 2021 at 09:27 pm
When I generate my pdf using spring boot I get all the text but it removes my images. Is there a way to fix this problem?

Reply
	

 Raja Anbazhagan says:
 December 3, 2021 at 09:23 am
If your images are being loaded from a different domain name, then that might be a problem. You should set converterProperties.setBaseUri(“https://your-domain/”); to your application URL base path to resolve the images properly.

Reply

	

 Manik says:
 August 31, 2021 at 09:03 am
Is it possible?
 A pdf with multi orientation page, (mixed landscape and portrait) using IText.
 I see – flying saucer, which use Itext in background, can do it.

Reply
	

 Raja Anbazhagan says:
 August 31, 2021 at 08:42 pm
Because we are using `HtmlConverter.convertToPdf()` method for our entire HTML, there is no way to specify the page size for each pages. If you are manually creating a PDF, then you could use the `PdfDocument.addPage()` method with which you can add pages of different size.

Reply

	

 Ivaylo says:
 April 10, 2021 at 01:10 am
Hello! First of all thanks for the nice tutorial! When I generating a pdf with external CSS(from bootstrap) I get some exceptions and errors that do not stop the application. Exceptions live “Unsupported pseudo css selector”. Any insight would be appreciated!

Reply
	

 Raja Anbazhagan says:
 April 10, 2021 at 02:51 am
Some of the CSS selectors are not supported in ItextPDF. For example, Animation keyframes, focus related selections are not possible in PDF. So the CSS parser will throw errors for these. But you could safely ignore these errors by disabling the logging for CssRuleSetParser classes. Add the following property to the application.properties and you should be good.

logging.level.com.itextpdf.styledxmlparser.css.parse.CssRuleSetParser=off

Reply
	

 Ivaylo says:
 April 20, 2021 at 02:06 pm
Thank you for the answer, Raja Anbazhagan! I have one more question: can I specify folder to download the file? Thank you in advance!

	

 Raja Anbazhagan says:
 April 23, 2021 at 11:10 am
When you are downloading a file from a WEB URL, Your browser decides where the file should be downloaded not the server. So you pretty much can’t control this behaviour From the server-side.
You could get more info on how to change the browser download directory in the following links.
Chrome: https://support.google.com/chrome/answer/95759?co=GENIE.Platform%3DDesktop&hl=en
 IE: https://support.microsoft.com/en-us/topic/download-files-from-the-web-abb92c09-af3a-bd99-d279-a89848b54b0b
 Firefox: https://support.mozilla.org/en-US/kb/where-find-and-manage-downloaded-files-firefox

	

 Mary Eshozemeh Olowu says:
 March 9, 2021 at 06:30 am
I realized I was using the wrong template engine

Reply
	

 Raja Anbazhagan says:
 March 9, 2021 at 12:59 pm
It doesn’t matter what template engine you use… as long as you have a HTML string its fine.
just replace the below segment to whatever you want.

 WebContext context = new WebContext(request, response, servletContext);
 context.setVariable("orderEntry", order);
 String orderHtml = templateEngine.process("order", context);

Reply

	

 Mary Eshozemeh Olowu says:
 March 9, 2021 at 06:03 am
Hi I tried using this method but my pdf is blank and only returning the name of the template

Reply
	

 Alex Java says:
 April 15, 2021 at 02:18 pm
TemplateEngine templateEngine = new TemplateEngine();
Don`t forget specify this settings for your template engine
 ClassLoaderTemplateResolver templateResolver = new ClassLoaderTemplateResolver();
 templateResolver.setPrefix("templates/mail/");
 templateResolver.setSuffix(".html");
 templateResolver.setTemplateMode(TemplateMode.HTML);
 templateResolver.setCharacterEncoding("UTF-8");
 templateResolver.setOrder(0);
 templateEngine.setTemplateResolver(templateResolver);

Reply

Search

Recent Posts
	Why Field injection is not Recommended?
	Spring Boot and Postgres Using Docker Compose
	How to Run a Spring Boot Application on Docker
	Logging In Spring Boot
	Changing Context Path in a Spring Boot Application
	Ways to add Servlet Filters in Spring Boot
	Ways to run Code on Application Startup in Spring Boot
	What is the purpose of mvnw and mvnw.cmd files?
	Apache Commons Logging – Explained
	Accessing application.properties in Spring Boot

© 2024 SpringHow

	Spring FrameworkToggle child menu

	Session
	Caching

	Spring Security
	Thymeleaf
	Banner.txt Generator

 Search for:

